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ABSTRACT 

The stability of the Kalman filter as it  is applied to orbit determlnation, 

and the dcpendence of i ts  behavior on the transition matrix, the initial co- 

variance matrix, the types of observations, and the covariance o€ the noise 

in the measurements is explored using a basic simple harmonic motion model 

with ze ro  and negative damping. 
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SECTION I 

IZU'TRODUCTION 

In a se r i e s  of by now we;l-!rnown papers  ;1-3 3 ,  R. E. Kalman descr ibes  

This filter, an opli i i lal  tilLer appliclllt: to noisy, Lime-varying, linear systems. 

which is essentially a minimum variance linear estimator,  is particularly suit- 

able for  those orbit-determination problems in which est imates  of state variables, 

which are based on noisy measurements and random initial conditions, are de- 

s i r ed  as rapidly as possible. 

The Kalman filter w a s  first applied to an on-board space-navigation problem 

for  a circumlunar mission by NASA at Ames ;4,5 1, and shortly thereafter by 

MIT LG 3. Republic ;7-10 1 ,  NASA at Goddard 111-13 1 and undoubtedly others  

have applied it to orbit-determination progr'ams that utilize ground-based tracking 

data as well  as on-board observational data. 

In general ,  in any search fo r  optimal filters and controls in orbit-determina- 

tion and guidance problems, the question remains,  even after o2timality has  been 

achieved, whether the result ,vt  filter o r  control system is stable. An answer in 

the negative, of. course,  would destroy the usefulness of the optimal formulation 

because small  disturbances would grow without bound in spite of the observations 

o r  control inputs. The question of finite time stability is also of significance 

h e r e ,  particularly for orbit  determination problems where a long time interval 

conipxred to the dynamics-of the models may not be available for observation. 

This question of the stability of the Kalman f i l t e r  in its application to orbit- 

determination problems and the dependence of such stability on the transition 

niatrjx, the covariance matrix of initial conditions, the types of observations, 

2nd thc covariance of the noise in the measurements does not appear to have been 

investigated, in spite of the fact that the convergence of any orbit-determination 

scheme is dependent upon it, and as far as the author is aware, no general proof 

of the stability o r  convergence for the f i l t e r  in this application exists. 

1 



Kalman [3 7 has explored the question of stability for  a l inear  system and 
' 

has obtained sufficient conditions for  asymptotic stability, requiring complete 

controllability and complete observability. In the basic orbi t  determination 

problcni , however, complete controllability is usually missing and furthermore 

the dynamic sys tems to which the linear f i l ters  are being apglied a r e  basically 

noli 1 in  ear.  

To :;ail1 some insight and experience with the operation of the Kalman 

f i l ter  as it  is applied in the orbit  determination problem, i t  was  decided, 

k f o r e  undertaking the investigation of the general problem, to look at some 

very basic simple mod-.ls which might in some sense approximate a vehicle 

in orbit  and yet be of sufficiently low o rde r  to be handled easily. We chose to 
look a t  a simple harmonic motion model in  one dimension with both zero and 

negative damping and attempted to e q l o r e  its behavior both for asymptotic 

stability and finite time stability as functions of various pa rame te r s  such as 
the choice of observations, the time between observations, and the covariance 

matrix of initial conditions. 

The investigation of this simple l inear model, which w a s  planned to be 

a preliminary exercise to the study of more general and nonlinear models was 

more  interesting than anticipated. It is expected that the more general and 

nonlinear models will be explored in further studies. 

concerned with the resul ts  of the linear model investigation. 

This report  will be 

In general, for notation, we try to use lower case Latin letters for 

vectors, u p p r  case Latin and Greek letters as ma t r i ces  and lower case 

Greek, and Latin le t te rs  with subscripts, as scalars, except that t and k 
are always sca la rs  denoting time. Exceptions are either obvious o r  noted 

in the text. The transpose of vectors and matr ices  is denoted by the vector 

o r  matrix primed. 

2 
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SECTION I1 

FORMULATIOK O F  THE PROBLEM 

A. Solution of the Filtering Problem 

The general filtering problem is essentially one of finding information 

, 

(about a random process)  that is based on observed values of another related 

random process .  The most general solution to this problem is the conditional 

probability distributions of the unknown r,andom process .  

is that nonlinear function of the observations that minimizes the mean-square 

error in the estimate. 

The conditional mean 

For  a Gaussian p rocess ,  the conditional probability distribiltion is com- 

pletely determined by its mean and covarimcc so that, in this case ,  it suffices 

to calculate these quantities for a complete solution. Fur thermore ,  the con- 

ditional m e m  tu rns  wi t  to be a linear function of the observations whereas the 

conditional covariances are independent of the observations. 

If, i n  audition, the process  is assumed to be Markovian (for example, a 
l inear  dynamical system excited by Gaussian white noise), it suf f ices  to know 

the means and the covariances at one instant of time. The conditional means 

are computed by putting the observed values through a linear fi l ter  whereas  the 
conditional covariances that are necessary for computing the conditional means 

may be found independently. 

It is the solution of the filtering and prediction problem of the linear 

Gauss-Markovian process  that is presented by Kalman. The basic model of 
this process  (or sequence in the case of d i scre te  intervals of time) is given by 

z(k) = M(k) x (k) + v(k), k = 0,1,2 ,... , 

3 \ 
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for discrete  time, where x(k) is an n-dimensional state vector; z(k) is a 
p-dimensional observation of  the state corrupted by noise; a, the transition 

matr ix  , r, and AI, the measurement o r  observation matrix are given matrix 
functions of time; and u(k) and v(k) are Gaussian white-noise sequences with 

E ;u(lr) 
is the 6 

Kronecker delta, and for simplicity of notation, we have suppressed the t in the 

arguiiiciits of our functions 2nd have written k fo r  L. We assume also, in 

(11-1) that 

= E :v(k) 3 = 0 ,  E :u(k) u'(m) = SIC, U(k),  E :v(k) ~ ' ( m ) ]  = 

C;k) for 311 k and m ,  where 6 
'iir*l km Ti(:<), E [u;k) v '(nil - = 

ii111 

1. Prediction and Filtering 

A solution to the prediction and filtering problem is the minimum 

variance estimate of x (k+l). This minimum variance estimate is the condition- 

al mean of s(k+l) ,  given the observations z(k), z(k-I), z(k-2), . . . z(O), which is 

denoted by 2 (k+l Ik) and given by [ 1,3,141 

A 
x(k+l Ili) = q k + l ,  k) $(I( Ik-1) + Kl(k) [z(k) - M(k) C(k Ik-1) 1 , (11-2) 

where the weighting function is dcfincd as 

Kl(k) = LO, (k+l ,k)  P(k Ik-1) M '(k) 

+ r ( k + l , k )  C(k) 3 :iLl(k) P(k lk-1) M '(k) + A(k)-J -' . (D-3) 
The e r r o r  in the estimatc is defined as 

Z'(k+l Ik) = x(k+l) - c(k+l  lk) , (D-4) 

and the covariance matrix of the e r r o r  is 

4 . 



- With the initial estiinates of the state and the covariance matr ices  
A 

‘givcn by x(0 1-1) = E ‘~(0) ;  = 0 and P(0 1-1) = E rx(0)x ‘ ( 0 )  1 , one may successive- 

ly c o m p t e  the estimate x(k+l ik) and the associnted covariance matr ix  P(k+l Ik) . A 

Thc noise input u becomes ze ro  when there arc no random perturba- 

tions associated with the dynamic equations. This implies that C = U = 0, and, 

in this case, Ec,s. (11-2), (II-S), and (E-5) rcd,,cc to 

A 
xjli+l jk) = C(k+l,k) G(k Ik-I) + Kl(k) jz(k)- M(k) x(k Ik-1) I (II-6) 

Kl(k) = C(k+l,k) P(lc lie-1) M ‘(k) [M(k) P(k Ik-1) M ‘(k) + R(k)J-’ , 
(a-7) 

(D-8) P(l<+l \IC) = ‘Cjl<+l,k) - Kl(k) N(k) 3 P(k Ik-I) c’(k+l,k) 

2.  Filtering Only 

For the filtering-only problem we obtain 
A A 

(n-9) 

(11-1 0) 

(II-11) 

A 
x(I< 11;) = X ( ~ C  Ik-I) + K(k) :z(k) - Bljk) x(k Ik-1)1 

K(k) = P(k Ik-I) 31 ‘(k) ;hl(k) P(k Ik-1) M ‘(k) + R(k) 1 -’ , 
P(kIk) = [I - K(k) M( l i ) l  P(k1li-1) , 

wiiich a r e  useful only with the updating equations, valid for C = 0 ,  
A 

$(k Ik-1) = Cjk,k-1) x(k-1 Ik-1) , (11-12) 

P(k Ik-1) =Q(k,k-l)  P(k-1 Ik-1) @ ‘(k,k-l) +r(k,k-l)U(k-l)T‘(k,k-l)  

(TI-13) 

5 



P 

B. Application b Orbit  Determination 

In the usual orbit determination problem, we m'ake discrete  noisy 

measurements of variables rclated to the state of a vehicle whose motion is 
uniquely determined by i t s  unknown initial state, and we ask, on the basis of 

the noisy measurements,  for  the "best" estimate of the state at any time. 

For  application to this orbi t  determination problem, Eqs. (11-9) to 
(11-1;) a r e  utilized in somewhat modified form, with u = U = 0. Instead of 

Eq. (11-12) in addition, the equations of motion are integrated f rom one obser- 

vation time to another so that we obtain 

A 
A x(k Ik-1) = f(k;x(k-1 Jk-I), k-1) . (II-14) 

In addition, i f  we define x(')(k) as the actual state, the measured observations 

z(m)(k) may be defined by 

z(ln)(k) = g(s(')(lr) ) + v(k) , (11-15) 

where v(k) i s  Gauss i an  white noise, and E[v(k) ~ ' ( m ) ]  = qcm R(k). 

observations z(")(k) are given by 

Computed 

z(')(k) = g ($(k jk-1)) . (11-16) 

The estimate of the state ft(k Ik), Eq. (11-9), is then taken to be 

$(k Ik) = $(k Ik-1) + K(k) [Z(m)(li)  - z(')(k)] . (11-17) 

Eys. (11-13) for up-dating the covariance matr ix  becomes 

while Eqs. (11-10) and (XI-11) for the weighting function, and covariance matrix 

correction remain the same. 

Since the equations of motion fo r  the orbi t  determination problem are 
nonlinear, and the total observations (in which the state may enter nonlinearly) 

6 



a r e  used in Eq. (11-17), some explanation of the application of the l inear filter 

' theory to this problcni is in order .  

The justification lies in the assumption that deviations and the est imates  

of thesc deviations of the actual trajectory from an  assumed known reference 

trajectory a r e  sniall,  so that in  terms of the clcviations, the estimates of the 

deviations, and tile errors ill the csti;nates, the equations are linear. 

integrated equations of motion for both the actual 'and cstiinated trajectories 

may thus be considered ecjuivalcnt to the integration of the known reference 

trajectory plus  the unlinown linear perturbations. Thus, if we define x(')(k) 

to be the s ta te  of the reference trajectory, we may write 

The 

x(a)(k) = ~ ( ~ ) ( l i )  + ax@) , 

x(li A llc-1) = x('*)(k) + 6 A x(k /k-1) , 
A x(k Ik) = x('*)(k) + 6$(li Ik) . 

F(li Ik-1) = s("(k) - c (k  [k-1) = 6x(k) - 6x(k A 

F(li ik) = ~ ( ~ ' ( l i )  - x(li Ik) = bx(k) - 6x(k Ik) . 

E r r o r s  in the est imates ,  also assumed small ,  a r e  given by 

Ik-1) , 
A A 

(11-21) 

(XI-19) 

(XI-20) 

If we expand the integratcd equations of motion fo r  both the actual and estimated 

t ra jector ies  about the refcrcnce trajectory, we obtain 

x(")(k) = f(k;x(a) (k-l) ,k-l)  = x(')(k) + (jx(k) 

= f(k;x(r) (k-I ) ,  k-1) + Qr(k,k-l) 6x(k-1) , (11-22) 

and 

A (r) - A 
$(kik-1) = €(k;x(k-1 ik-1), k-1) = x (k)  + dx(k/k- i )  

(k,k-1) 6x(k-1 Ik-1) , A 
= f(k;dr)(k-1), k-1) + (LI-23) 

7 



. where 

Thc dcvintions nnd the estimates of the deviations thus satisfy the linear 

equations 

If we similarly cxpand z(m)(k) and z(")(k), we oSkin 

~ ( ~ ) ( k )  - z(')(k) = v(k) + M(k) Y(k1k-1) 

From Eq. (11-21), this can also be written as 

wl-tcre 

bz(1;) = M(k) 6x(k) + v(k) . 
n u s ,  using Eqs. (II-23) and (II-29), the est imate  for  the s ta te ,  

Ey. (II-17) may be writtcn as 

$(k Ik) = x (r) (b) - + 62(k Ik) = x(r)(k) + 6$(k Ik-1) 

+ K(k) [6z(k) - N(k) 5: (k Ik-1) -1 

or  

(j$(klk) = A;(klk-l) + K(k) [6z(k) - M(k) 6f(klk-1); . 

(II-24) 

(11-25) 

(II-26) 

(XI-27) 

(II-2 8 )  

(11-2 9) 

(E-30) 

(II-31) 

(II-32) 

8 



From Eqs. (II-32), (lI-30), and (11-23) leading to (II-26), we conclude 
* then that although we a r e  integrating nonlinear equations of motion Eq. (II-14) 

and dealing with total observations in which the state en te r s  nonlinearly, (Eqs. 

(11-15) and ( I I - l G ) ,  for sinall deviations and estimates of deviations from some 

reference trajectory,  we are in fact q q l y i n g  the linear filter theory only to 
tile cievintions which satisfy linenr ccjiiations. 

We should note, however, that in this case, the transition matrix a, 
Ey. (11-24), and the oSservation niatrix AT, Eq.' (11-28), are functions of the 

total estimated trajectory state. This is the fundamental difference between 

a,,plying the f i l t c r  to a l inear system, and to the deviations of a nonlinear 

system. 

C. Development of the E r r o r  Eyllations 

In investigating the stability of the Kalnian filter as applied to orbit  de- 

termination, we c?xplore the behavior of the e r r o r  in the estimate (together 

with the covariance matris of the e r r o r )  ra ther  than the estimate itself. If 

Eq. (II-23) is subtracted i rom Eq. (II-22), with the e r r o r s  as defined in 

Eq. (II-21),  we obtain a linear equation for  the up-dating of the e r r o r s ,  

F(kIk-1) = Q ( k , k - l )  Z(k-1 Jk-1) . (ri-33) 

The l inear equation for the corrections to the e r r o r s  as a result  of the 

observations, from Eqs. (11-21), (II-27), (11-29), and (11-32) becomes 

?(I< Ik) = F(k [k-1) - K(k) cM(k) Z(k Ik-I) + v (k) 7 . 
In suniinary, then, the equations for  the e r r o r s  and the covariance 

ma t r i ces  of the e r r o r s  to be investigated fo r  stability may be written as 

Z(k Ik) = Q(k,k- l )  %'(k-1 Ik-I) - K(k) v(k) , 

(11- 34) 

(II-35) 

(11-36) 

9 



I -  

* 

I 

P(k1k) = E[F(kIk) Z' (kIk) l  = [I - K(k) M(k)] P(k]k-1) , (11-37) 

P(k Ili-1) = E [Z(k'\k-i) 2' '(k Ik-I) 7 = Q(k, k-1) P(k-1 Ik-1) ip '(k, k-1) , 
(11-38) 

(11-39) K(k) = P(k \ k - l )  h l  '(IC) rAl(1c) P(k lk-1) M'(k) + R ?  -1 . 

Eqmtion (11-35) i s  a linear nonautonomous vector difference equation so  
that its stability properties are independent of the input function v(k), and we 
may therefore study the stability of the free system given by 

Z(k Ik) = Q(k,k-I) F(k-1 lk-1) . (11-40) 
, 

Equations (11-37) - (E-39) may be combined to give the nonlinear non- 

au tono niw~ s matr ix  differ en ce e yu a tion 

P(k /IC) = G(k,k- l )  P(k-1 Ik-1) Q '(k,k-1) {I 

- M '(k) [AI(k) @(k,k- l )  P(k-1 jk-1) 

< 

' (k,k-l)M '(k) (II-41) 

+ R1-1 M(k) c ( k , k - l )  P(k-1 Ik-1) c ' ( k , k - l )  1 . 
We note that the stability of the e r r o r  (Eq. (11-40)) is determined-by the 

Ixhavior of the matrix 9 which is a function of the covariance matrix but that 

the equation for the covariance matrix is independent of the e r r o r  and so may 

be investigated l irst .  

Some fundamental notions of stability and Li'qunov's Method have been 

presented in [15: and ' 1 G  3 . We recall that given the free vector difference 

equation "(5 
C + l  

stab if = h(x('),L) for  all L. We observe from Eqs. (E-40) and (11-41) . 

f o r  the e r r o r  and covariance matrix,  that the origin is an equilibrium state 
for both the e r r o r ,  ?'(k Ik) and the covariance matr ix  P(k Ik). Additional 

equilibrium points, however, may arise iiider special  conditions. 

) = h(x($J,t$ , that a state is an equilibrium (o r  critical) 

10 



.- D. Positive-Definiteness of Covariance Matrix 

Most of our investigations will be concerned with the behavior of the 

covariance matr ix  P(k ]k) for the particular models we have set up. In general, 
however,froin the e r r o r  equation 

F(k jl<) = \s(k \ I < - i )  ?(I<-1 jk-I) + K(k) v(k) , 

and the resulting covariance equation, 

wc? note that if the noisc covari,mce matrix R n;ld the initial e r r o r  covgriance 

ina t r i s  P(0 ‘ 0 )  arc? symmctr ic  and positive-definite, then the covariance 

in:i lris P(k Ik) is always symmctric and positive-definite, except, perhaps 

i n  ‘he l imit ,  a t  the equilibrium point a t  the origin where the norm of the mat r ix  

will be zero. (In general, for any positive-definite matr ix  A, the expression 

73 A B ‘ is positive-&finite for all non-zero B, and sums of positive-definite 

mat r ices  are positive-definite. ) 

11 



SECTIOS IIT 

SINP LE HARMONIC NOTION MODEL 

A .  Dynamic Equations 

The dynamic equations for simple harmonic motion a r e  given by 

x = A x ,  

where the two-component vector x and the two by two matrix A are defined 

bY 

X 
- 1 -  

IIcrc, the motion is periodic, in one dimensiorl. 

every A units of time, the solution is given by 

With observations assumed 

where Q ( A )  is the constant transition matrix. Observations,  

z . = M . x + v  i = 1 , 2  , . . . ,  
1 1 i ’  

fo r  such a system may take the forms listed: 

12 
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a = b / ( b  2 + s  2 ) ;  b > O .  1 

range: M1= p 01, 
31, = [O 11 , L range -rate: 

range and range-rate: lLIB = I , 
on-board observation 

ground-based obser- 

of ansle: M 4 = - [ a  0 1  9 

vation of angle: XI5  = + ra 0 1  8 

The angic obscrv:ition matriccs arise from the following considerations. 

For the o!i-board obscrvation, a Inntimark b units perpendicular to the line 

of motion is obscrved from the vehicle, and dcviations of the angle ,g = arctan 

(b/x ) (so that t 6 = AI 6s) arc mcasured. Similarly, fo r  the ground-based 1 4 
oSserv:ition, a sitc again b units from the line of motion observes the vehicle, 
and mc\:isures dcviations of the angle e= arctan (x1/b) ( S O  that 6 8 = M5 6 ~ ) .  

Tiic observation noise vector v is whitc and Gaussian with zero mean i 
and co;n;Jonents and variances defined as follows: 

v. = < R = u i  2 , i = 1 , 2 , 4 , 5 .  
I i '  

13. E r r o r  and Variance Equations 

The e r r o r  equations for simple harmonic motion reduce to those of a 
two component state e r r o r  vector and a three. element two by two symmetr ic  co- 

variance matrix. The equations for the covariance matr ix  are independent of 

the e r r o r  and so may be investigated first. If we define the covariance matr ix  

at \ due to measurements up to \ as  

# (XII-Zb) 

13 



tk-1 as and the covariance matr ix  at $ due to measurements  up to 

6 i*(k-l) vi*(k-l) 

n i*(k-l) < i*(k-l) 
Pi(k I k-1) = 

and further define the vectors 

i = 1 , 2 ,  ... , 

we obtain the equations 

pi*@-1) = B pi(k-l) , i = 1 , 2 , .  . . 
where  

sin 2 A 2 
I 

B = I -:sin 2 A. cos 2 A + s i n 2  

L J 

and, for i = l ,  a n d 2 ,  

. (rn-2C) 

. 
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and 

In t e rms  of the components of p.(k) and p.*(k-l) ,  Eq. (III-5) becomes 
1 1 

t1(k) = [,*(k-l) [l - [ l*( i<- l )  / (Cl*(k-1) + o1 2 ) 3 , 

* I C - 1 )  / ([l*(k-l)  + o1 2 ) i 

<,(I<) = pl*(k-l )  - :nl*(k-l) 1' / (El*(k-l)  + 0 2 ) 

q l ( : C )  = q p - 1 )  [l - €1 ( , 

,. 1 

(ID-sa) 

(ID -8b) 

1. Linear Behavior of Variance Equation 

In the neighborhood of the equilibriuni at the origin, the t e r m s  F 
and G in Eq. (III-5) may be expanded in a power series in the variables 5 *, i 
vi* and C i *  resulting in beginning t e r m s  of second order.  In this case, the 

reduced cyuntions (or  equations of the first approximation) 

p.(k) 1 = 13 p.(k-1) 1 , i = 1 , 2 ,  (m-9) 

ohtcTincd from Eq. (ID-5) by linearization are called equations with significant 

bchavior of the equilibrium if the matrix B has either only eigen-values whose 

logarithms havc negative r e a l  parts, o r  hns a t  least one eigcn-value whose 

logarithm has  a positive real  part. The equations have critical behavior of 

the equilibrium if none of.the eigcn-values has a logarithm with positive real 

;)arts; howcvcr, cigcn-values whose logarithms have vanishing real p a r t s  do 

occur.  (We recall that on eigen-value whose logarithm has negative real p a r t  is 

one whose absolute value is less than one.) 

15 



The importance of the linear approximation is contained in the 
followin: theorem due to Liapunov for differential equations and P e r r o n  for 

difference equations j17 : 

Theorem: If the strd)ility behavior of the diffcrence (differcntial) equation of 
the f i r s t  :t;)prosimation is significnnt, thcn tile equilibrium of the complete 

dilfcrencc (ciiLfcrci~~iaI) equation has ihe same stability 'behavior as the equili- 

br ium oi the rcduced equation. hi cri t ical  ca ses ,  the stability behavior is not 

determincd only by the f i r s t  o rde r  tcrms. 

In view of thc above theorem, i t  is tiius of interest  to investigate 

the Iiiicar ccjiicltions (In-9) and find the eigcn-values of the matr ix  B. By 
solving dct (I3 - I) = 0, we find the characterist ic equation for the eigen- 

values to be 

which Ins the roots = 1, A,, = cos 2 A * i sin 2 . The eigen-values 1 3 
of I3 are thus all  of absolute value one which mecans the behavior of the 

linearized ccjuntion in this case is critical, r a the r  than significant with the 

stability dctcrininccl by the higher order terms. 

We liote that the matrix 13 is a function of the elements of the 

transition matrix alone. 

mc a s u r  c in c n t s no r h i  r w c i$i t i ng that dc tc r m in e s whc the r the linc ar ized 

cciiiatioiis for the covariance tcrms have significant behavior a t  equilibrium, 

thcrcby determining the stability a t  the origin of the completc system. F o r  

dynamic systems which a r e  tlicmselvcs asymptotically stable, o r  unstable, 

onc might thcn cxpcct significant behavior; for systenis  which are weakly 

stable,  cri t ical  behnvior would be most liltcly. 

equations of motion, the dynamic system we would be concerned with would 

be tk~e variational equations about some raference motion with the transition 

~ ~ n t r i ~  

Thus, i t  i s  thc dynamic system, and not the type of 

(In general, for nonlinear 

a fi;ndnniefital matrix solution. ) 



* 
2. Reducing to Canonical Form 

1 -1 -1 

-i +i 

I3y computing the eigen-vectors of B, and transforming B into 

its diagonal canonical form, we may show that in this case, the origin is the 

1 

only equilibrium point [18 7 . 

while its inverse may be shown to be 

If we now dcfine the vectors r.(k-1) = T-l  p.(k-1) , j = 1 , 2 ,  
J J 

in t e rms  of tile components of r w e  have 
, j '  

r .  
J 

where is the complex conjugate of p . Since p.(k-1) = Tr.(k-1) , we 

obtain 
j j J J 

pj*(k-1) = B Tr.(k-1) , j = 1 , 2  J 

r (k) = Arl (k - l )  - T-' F(BT r l (k- l ) ) '  , 

r2(k) = Ar, (k-1) -. T-l G(I3T r2(k-l) j 

1 

, 

-1 whcre  A = (T  BT) is the diagonal matr ix  

17 



, -  
I 

aiIC1 we have writtcn A for A,, and X for 1,. The expressions for T - l  F 

and T- l  G become 

and 

Solving for tlie'equilibrium points, we find, for j = 1, 

h 
18 



From the first equation, we requi re  - 2Xpl = 0 . But from 

% the second c(ju:ltion, this in~plics 0 (I-A) = 0 . Since for 0 < < 2n , 1 
# I , we a u s t  have p = 0 , and therefore (and of course ) = 0 . 1 .  1 1 

These sane  considerations apply to j = 2 . 

The variance equ:itions (ID-3) and (ID[-5) may be thought of as a mapping- 

to time k s \ , i.e., tk-1 from time k-1 : 

p.(li) = 1-1. ( ~ ~ ( k - 1 ) )  , i = 1 , 2 , .  . . . 
I 1 

The mapping is contracting if under a suitable norm (where norm 

pi(k) = pi(k) I ) ,  we have 

Ln this case ,  the stability a t  the origin is asymptotic, f o r  we may choose , 
the norm itself a s  a positive-definite L iqunov  function V, i.e. , 

Liapunov function, V (p.(k)) = 1 '  p.(k) I \  , positive-definite, 
1 1 

I -  in which case  the ehnnge in the Liapunov function , 

A V = p.(Ii) - " ~ ~ ( k - 1 )  ' , 
1 

is negative-definite. 

conditions, the ecjuilibriuni point at  the ori-gin is asymptotically stable. 

By one of Liapunov's theorems j15 - 173 , under those 

One way to find the conditions under which the mappings are contracting 

is to do i t  in two stages, i.e., f i r s t  show that 

1 pi(k) < pi*(k-l) 1 '  , (rn-10) 

and then that 

1 -  

I 

(rn-11) 
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so that by combining the two inequalities we obtain 

( '  P i W  ' < , /  P i ( W  / /  , i = 1,2, ... (rn-12) 

For i = 1,2, we can show, using the positive-definiteness of the co- 
variance matrices for non-zero clements that the components of p.(k) are 
l e s s  than the components of p . * ( k - ~ ) ,  i.e., that 

1 

1 

; 5 p) - 2  < r r 2 * ( k q 2  

[?li(k) 1 2 -  .: Ji*(k-l) - 2  ~ 

, 

9 

Il we ilse for a norm,  then 

2 pi(k) ' I  = pi(]<) ' N pi(kj , 

I '  ~ pi*&-1) 1 ;  = pi*(k-1) K pi*(k-l) , 

where N is a positive definite, &agonal matrix, with 

and 

we shall have 

(III-13a) 

(III-13b) 

(m -1 3 C) 

20 



To find what values of f and g in the matr ix  N will cause 

"pi*(k-l) 5 Ipi(k-l) I1 (rn-11) 

lo hold requircs  somewhat more  effort ,  for the identity will not. We prove 

(III-11) by coiiiputing the norm, Eq. (m-13) of both sides  of 

Pi*(k-I) B pi(k-I) , 

. i.e., 

For convenience, we define the following quantities: 

c = c o s  , s = sin A 9 

Eq. (iIJ-3) in component form is thus (omitting the (k-1) arguments) 

vi* = - (s2/2) i i  + c2 ni + (s2/2) C i  
- s 2  v i + c  T i  , 'i pi* = s 

, 
' 2  2 

s o  that 

i;pi*(k-l)'j2 = [ c  2 {i  + ~ 2 n . + s  2 2  c .1  + f [ - ( ~ 2 / 2 ) { ~ + ~ 2 ~ ~ + ( ~ 2 / 2 ) p . - ]  2 
1 1 1 

2 4 2 2  2 2 = 5 ,  .' [c4 + fs 2/4 + gs 3 + p i  [s 2 + fc 2 + gs 2 1  
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I f w e  n o w l e t  g =  1 and f = 2 ,  weobtain 
/ 

I -  

2 2 2 l  = l'p.(k-l) , ,2 , 
1 :ipi*(k-l) = [ P i  + 2 ~ ~  + P i  - (EX-1 4) 

which is what we wanted to prove. 

Thus, inequality (111-12) iiolcls, h e  total mapping i s  contracting and the 

equilibrium a t  the origin of the variance vector, p.(k) is asymptotically stable. 
1 

We note h a t  this norm, i.e., 

' ~ ~ ( k - 1 ) ' ~  = [,ti(k-l): 2 +2[qi(k-l)-! 2 + [Ci(k-1)', 2 , 

' , ~ ~ * ( k - 1 ) ' ~  =.;Ci*(k-1)l2 + 2 ; ~ ~ * ( k - 1 ) ?  + [ q * ( k - l ) I  2 , (III-15b) 

. 
turns  out to be one of the natural norms for a positive-definite matrix,  i. e. , 
the trace of the matr ix  (P.) which i s  equivalent to the s u m s  of the squares  

of the cigen-values. Thus, Eq. (111-14) could also have been proven using 
Eq. (IT-3s) 'and (III-2), for 

2 
1 

trace ;Pi(k I k-1) 1 = t r ace  {a (A) [Pi(k-l I k-1) ' (A) 1 , 

since ' ( p )  = Q -' (A)  . Upon expansion this resul ts  in 

(III-15a) 

D. Other Measurcmcnt Matrices 

1. Identity Matrix 

We have proven the asymptotic stability of the variance equation 

assuming simple harmonic motion, and two types of measurement matr ices ,  

M = [I 0' (implying range nicasurements) and R.1 = [0 1 3  (implying 

range r a t e  1::casurcments). One would expect that the situation for &I3 equal 

to the two by two identity matrix, I, would be no worse. 

equations affecting the covariance matrix are 

1 2 

For  M3 = I, the 
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i I<(k) = P(lc lk-1) [P(k fk-1) + R: , 

P(k Ili) = [I - K(k) 2 P(k ]k-1) , 

in addition to 

which is independent of M With the noise covariance matr ix  defined by 3' 

2 i o  % O I R =  

we  obtain, for the elements of the covariance matrix,  P(k Ik), the equations 

(Ill-15) 

where 

For these equations, we again have 5 *(k-1) > 0, < *(k-1) > 0 and 

6 *@-I) c *(k-1) - [q*(k-l)  2' > 0, and as a consequence c(k) > O,<(k) > 0, 

and 6 (k) 2 
(k) - r ~ ( k )  3 > 0 . From Eq. (III-15), again it can be seen that 

: [ (k) l2  <[c*(k-I) j 2 , 

[??(k):' < [n*(k- l )  1 , 2 

so hat,  using our norin (III-IS), we again have 
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Since Eq. (nI-14) holds independently of the measurement  matrix, + .  

we may again conclude that tile vari:mce equation for the identity measurement 

matr ix  is asymptotically stable for all initial conditions. 

r , .  
A lie an;lc ol)sc~r~~:aiion mcasurt’Iaicnt matr ices  may be developed 

a s  follows. II 1, i s  n positive constant, nnd x (t) is the position component 

of Uic state, then 8 = arctrin (b/x (t)) would represent  an on-board observa- 

tion of thc point a t  b from the vehicle a t  x ( t ) ,  while 3; = arctan xl(t)/b 

would be the cyuivalcnt ground-based observation of x (t) f rom the point b. 

Dilferentiating both equations to obtain the angular deviations in t e r m s  of the 
deviations of the s h t e ,  we find 

1 
1 

1 

1 

where 

~ ~ = - [ a  0 1 ,  M 5 = + T a  0 1 ,  

a =b/(b2 + x l  2 ) , and 6 ~ ‘ ~  [6X1 6% 3 

Substituting these measurement mat r ices  into the equations for the 

covariance matr ix  we bbtain 

1 
5 i*(k-l) 

q k )  = Ei*(k-l) 11 - 2 2  ti*W1) + a i  /a L 

24 



Comparing these equations with those, for pi(k) [Eq. IIK-8a'] , 
for  the range-only observation, we note that they a r e  identical except for 

the noise covariance te rm which is now 

with r = (l? -ex 2, ' , the ohscrvation range. 

angle observation nintrices is equivalent to using range measurements  with 

corrcssontlingly higher ,, and non-conshiit measurement e r r o r s .  We note a l so  

that on-board and ground-based angular observations give identical r e su l t s ,  

and that both a r e  thus a l s o  asymptotically stable for the simple harmonic 

model. 

Since r '5 b , we see that using 
1 

E. Behavior of E r r o r  Ecpation 

Having determined the behavior of the variance equation for the measure-  

lneiit matr ices  discussed, one might ask then for the behavior of the l inear 

e r r o r  equation whose behavior is conipletely determined by the matr ix  

For i = 1 , 2 ,  thcse a r e  

9, A (k,k-l)  = 9 

Cll2 sin L3 

1 

25 . 



We note that lo r  these matrices,  and for Q. in general, that as 
a ,  the transition matr ix  

' -  
1 

l i  -+ = , and P -+ 0 ,  we hzvc (bccausc I< - 0) ,  

of the system, with, in thc case of simple harmoqic motion, eigen-values all 
of ma,witucle one. 

the original t1yn:mical system, and i n  our case ,  wcalcly stable. One woilld 

eq icc t ,  however,  titat for cvcry  finilc t ,  tlic cigcn-\-alucs of 9 would have 

magnitudes l e s s  than one so  that one would again expect asymptotic stability. 

The analytic proof of thesc! f:icts and the implications, considering that the 

matr ix  is time-varying have not yet been investigated, although computer 

simulations, which we shall discuss appear to demonstrate this. 

Gi i i 

'The stability of tlic e r r o r  equations would then be that of 

F. Some Computer Studies 

1. P a r ; ~ m c t e r  Variation 

Eqiations for the orbit dctcrmination of the simple dynamical model 

wi tiiout clamping :inti with negative damping have been programmed in FORTRAN 

4 Cor the IBhI 7094 computer providing a relatively simple flcxiblc tool fo r  

chucking the analysis and analyzing those aspects of the filter behavior which 

become too complicated and tedivJs for analysis. In these runs,  the effects of 

varying the time between observations, the covariance of the noise, the obser-  

vation matrix,  and the initial covariance matrix were observed. In all cases 
run without damping, stability a t  the origin was indicated with, however, the 

degree of stability very much a function of the parameter.  

I 

Tahlc I l i s t s  the conditions for sonic representative runs made in 

which the paranietcrs  were varied as indicatcd. Phase plane plots of the 

result ing e r r o r s  and diagonal elements of the covariance matrix are shown 

in Figures 1-1G. 

Comparing Figures (3-4) with (1 -2) i l lustrates the degrading 

effect of increased noise covariance. Decreased initial covariance in position 

(Figures  (5-6)) increases  the initial excursions in the e r r o r  but resul ts  in. 

much smoother variance behavior. Increasing the initial covariance in velocity 
(Figures  (7-8)) results in a much larger velocity error initially but again re- 

su l t s  in smooth variance decreases. 
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TABLE I 

i 15 - 16 

COITPUTER RUNS OF K A L L M  FILTER 
AND SIMPLE HARMONIC R.IOTION 

29 

M 

[l 0 1 

[ O  11 

100 

-10 -' 

x - (o lo )  = [ 1 

( lo2  lo2 )  

2 
'i 

2500 

l o 4  
32 

8 I 

Comparing Figure (9 - 10) with (1 - 2) i l lustrates the effect of 

For  the conditions assumed, the measuring range-rate instcad of range. 

solutions arc not  as stable. 

inorc dramatically, the e r r o r s  being almost only wcakly-stable. Finally 

Fibwrc (13 - 1 4 )  and (15 - 1 G )  illustrate the degrading effect of fewer obser -  

vations per period. - 

Figure (11 - 12)  i l lustrates this effect even 

2. Degree of Stability 

To illustratc the dcgrcc of stability as a function of varioxs 

pa rame te r s  in a more quantitative way, a number of r u n s  were made varying 

the number of observations per period m d  the initial covariance matrix with 

the noise covariance matrix normalized to one. 
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record in^ the ratios of the mngi-iitudcs of final and initial e r r o r s ,  

and final and initial cov:iriance trnccs as filnctions of the pa rame te r s  indicated 

in general that the larger  the initial covariance matr ices  and the greater the 

numbcr of obscrvations per period, the greater  the rate of decay of the e r r o r s  

and v a r i m c c s ,  i.e.,  the smaller  was the ratio between the final and initial 

covariancc matrix trnccs and e r r o r  magnitudes at the end of one period. 

Figures 117 - 2 2 1  are plots of the ratio of the magnitudes of final and initial 

e r r o r s ,  and the ratio of f ina l  and initial covariance t races  as functions of the 

logarithm of the initial velocity crror variance with the position e r r o r  variance 

as a parameter  for 8 ,  lG, and 48 observations pe r  period. These r u n s  are for 

an observation of range, i. e., MI = [I 01 . The runs for the velocity obser -  

vation were identical. 
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SECTION IV 

hlOTION WITH NEGATrVE DAMPING 

A. Dynamic Eqllations 

A s  par t  of the objective of exploring the stability of the Kalman filter as 
a function of the transition matr ix  and the model used, simple harmonic 

motion with negative damping w a s  investigated. The equations for this model 
are given by 

x = D x  , 

where 

the solution to these cquations is given by 

x(k+l) = Q (k+l ,k) x(k) , 

where tlie transition matrix,  Q(k+l,k) is 

We recal l  that the influcnce of the transition matr ix  is felt only in the 

so-called u p d a t i n g  equations relating p.*(k-l) to pi(k-1) , i. e. ,  
1 

pi*(k-l) = B pi(k-l) 

29 



. where now 1 -  

I 

sin 8 i 2  -1 s i n 2 p 2 ~ y s i n  2 e cos 2 e ~ X s i n 2 0  
-@2 cos 2 0  

The eigen-values of this matrix are given by 

whose absolute values are all greater  than one. Thus,  the behavior at the 

origin of the linearized portion of the total nonlinear equation for p.(k-1), 

Eq.  (TZI-S), is significant with the stability determined by the eigen-values 

of the matrix B. In this case,  we conclude that the origin is an unstable 

equilibrium point. However, in this case  also, we might expect an equilibrium 

point for  the covariance matr ix  other than the origin to exist. 

1 

, 

i 
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C. Some Computer Results for Negative Damping 

Figures 23-34 illustrate the unusual behavior one can expect with a model 

of this type. Thc conditions for these runs are given in Table II. In Figure 23, 

we observe what appears to be a n  unstable e r r o r  phase plot over  one period. 

(Time i n  this figure gocs clockwise.) 

apparcntly unstable diagonal t e rms  of the covariance matr ix  as a function of 

t ime o v e r  one period. If w e  increase the initial covariance matrix by a 
factor of 10, we observe,  in Figure 25, that the e r r o r  curves are stable, 

while the variance curves of Figure 26 still are increasing and appear to be 
unstable. Finally, with a sti l l  larger  initial covariance matrix, the error 
curves,  in Figure 27,remain stable, while now in addition, in Figure 28, 

the covariances decrease as indicated. 

In Fippre 24 appe'ar increasing and 

* 

TABLE II 

MOTION WITH NEGATIVE DAMPING 

2 100 - 100 

0 -1 0 
x(O)= [ 1 ;  g(OlO)=[ 1 ,  R = u 2  =1  . 

M = [O 11 , (Y = -0.2 , 2n = 32 (observations per period) 

Figure No. Run No. P(0 10) 

23 - 24 DIIM 4 diag. ( . O l  .01) 

25 - 2G DIIM 5 (.l .1 ) 

27 - 2 8  DIIM 6 (1. 1. ) 

29 - 30 DIIM 4A . (,Ol .01) 

31 - 32 DHM 5A (.l .1 ) 

33 - 34 DHM 6A (1. 1. ) 

. 
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Longer timc computer resul ts  over severa l  per iods show that  the errors 

finally become stable and that the variances reach a steady state different f rom 

zero. Thus, in Figure 29, the e r r o r  after increasing for two periods finally 

decreases and approac'hes the origin. At the s a m e  t imc,  in Figure 30, the 

variances while s t i l l  increasing initially, eventually approach a steady-state 
valuc of np;,roximatcly 0.15. In FiL'uro 31, f o r  tho highor initial covariance 

matrix,  the e r r o r s  curves  remain stable while the covariances in Figure 32 

again increase to a steady-state value. Finally in Figures 33 and 34, stability 

of both errors and var iances  are indicated with the var iances  in this case 
approaching the steady-state value of approximately 0.15 from above. 
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SECTION V 

CONCLUSIONS AND RE COM BIENDATIONS 

A s  indicated in the Introduction, to gain some insight and experience 

with the operation of the Kalman filter as i t  is applied to the orbit problem, 

it w a s  decided, before undertaking the investigation of the general and more 

complete problem, to look at some very basic simple models which might in 
some seiise approximate a vehicle in orbit and yet be of sufficiently low 

order to be handled easily. We chose to look at a simple harmonic motion 

niodel i n  one dimension with both zero and negative damping and have explored 

i t s  behavior both for asymptotic stability and finite time stability as functioas 

of various parameters such as the choice of obscrvatims, the time between 

. 

observations, and the covariance matrix of initial conditions. 

Our results may be summarized as follows: 

1. If the linear par t  of the variance equation has significant behavior, 

then the stability of the variance equation at the origin is completely deter- 

mined by the transition matrix of the dynamic system, where the time between 

observations may, o r  may not enter. If the behavior is critical, then the 

oSservation matrix and noise covariance matrix play a role. 

2. Ln the case of simple harmonic motion, we have proven asymptotic 

stability at the origin of the variance equation showing the mapping was con- 

tracting in two parts,  the f i rs t  affected solely by the transition matrix, and 

the second a function of the measurements and noise covariance. 

3. Anzle observations are equivalent to range observations with 

higher noise covariances. 

4. The rate of decay of the e r r o r ,  which is of significance in orbit 

determination where not more than one period may be observed is very 
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I 

much a function of the initial covariance matrix relative to the noise covariance, 

and the time bctwecn observations. Ln general, the larger  the initial covar- 

iaulce matrix, and the greater  the number of observations pe r  period, the 

grea te r  is the r n t c  of decay of the e r r o r s  and variances, i. e . ,  the smaller  

is the ratio Iietwccii final and initial quantities over one period. 

l 

1 -  

, 

5. 

which is unstable (e.g. oyr negatively damped model), one might expect other 

finite equilibrium points for the variance equation to exist and in fact, they 

a r e  necessary for stability to be achieved. 

For significant behavior of the variance equation at the origin 

A s  was also indicated in  the Introduction, the investigation of the 

l inear models studied here can only be considered the first part of the problem. 

The logical questions to be asked next a r c  

a. Can anything be said about the stability of more general 

l inear models applied to orbit  determination, and 

b. how does the filter behave when the djmamic system is 

nonlinear as it is in practical orbit  determination problems.? 

It is these questions which should be explored next. 
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A. Latin Symbols 

r 
r 
Y 

t 
T, T - ~  

SECTION VIII 

GLOSSARY 

constant inatrix 

positive constant 

variance up-dating matrix 

covariance matrix of noise u and v 

cos A 
expectation 

vector functions 

positive, scalar  elements of norm, N 

vector function 

nonlinear mapping 

identity matrix 

weighting function 
integer representing time values ( = \) 

integer representing time value ( E t ) m 
measurement or observation matrix 

positive definite diagonal norm matrix 

covariance matrix of e r r o r s  
variance vectors 

covariance matrix of noise, v 
oSservation range 

transformed variance vector 

S h  A 
time 
matrix of eigen-vectors and inverse 
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* 

* , v  
U covariance matrix of noise u 

V Liapunov function 

.X n-dimensional state vector 

X 

X 

Gaussian white noise sequence vectors 

A estimate of state vector; conditional mean 

e r r o r s  in estimate of state vectors 
cu 

B. Greek Symbols 

negative damping factor (-1 < Q < 0) 

matrix function of time 

Kroneckcr delta 

deviation 

time betwecn observations (E 

determinant appearing in identity measurement equations 

noise component of v 

covariance matrix elements 

covariance matrix elements 
anglc of observation 

\+l - $1 

e phase angle in motion with negative damping (=  A) 
x (1 - a2)  +- 

2 
'i 

e igcn -value s 

diagonal matrix 

covariance matrix elements 

component of transformed vector r 
complex conjugate of P 
noise variance 

transition ni a t r  ix 
angle of observation 

matrix relating e r r o r  states 

components of vector r 

. 
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C. Superscripts and Subscripts 

a ac ha1 

C computed 

e equilibrium 

i 

k integer index of time 

m measured 

r ref e ren  ce 

pertaining to ith measurement matrix 
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